第四百四十三章 微积分函数,听着困却能上天(1/1)

天才一秒记住本站地址:[笔趣阁ok]
https://www.bqgok.net最快更新!无广告!

……

林敏熙仿佛自己听了高数——微积分。感觉自己高中上课的内容又回忆起来。那些关于函数,关于推导的过程。

而之“以直代曲”,阐释微分概念,也就是称差分。故而将曲尽乎接近于直线,而测算距离,而比较好算。是故,因为归源,天地万物而有了各种新的思想,新的变化,也正因为归源,我们才知道归源后为直线,而未归源前为曲线,但是归源中的归源,不一定是直线,不一定是曲线,也是直线,也是曲线,故而我称之为归源。而之事物归源于道之上,而释道,而释万物。而又孕之无极之子,而生太极。此谓归源。而天地万物皆可归源,天地万物亦可不归源。此乃归源之归源,而之归源是否有神,有之神明而破之归源而之言!未破局归源亦可称之归源,不破局之一则也有归源。而是“极”的状态转变观念。在乎极的空间概念和时间思维的变化。

取之圆,而算面积。古代,近现代科学家用“以直代曲”而之分割圆为长方形。(注:矩形说矩形而为之佳,而正方形又有菱形。故而此处引申两个概念。)其实“圆为正方形”亦才是基本思维。而长方形也可以,但是长方形没有正方形而接近圆之本来思想的意识流,而之思想与科技是为本就一体。为何一体?因为事物存在归源,故而皆之命运共同体,而所谓说的“大同世界”。

而之圆的面积S等于字母πR平方。(平方也可称次方,而之R二次方。)而之(帕为字母π表)

而之R为半径,而πR为长。此时我们用长方形来替换思想上的正方形与圆的关系,因为正方形的边相等,而表述的时候麻烦,故而圆分割无数等份而接近于长方形。(帕为字母π表,故而字母π表圆的周长与半径得比值。字母π表圆周率为3.……已经算出无数循环数了。计算机算出了无穷∞位数。)

字母π表就是π。因为表示简单,而运算时则根据需要取值,思想上归源亦有归源,而之π得结果是π,而π因也是π,而此时圆周率值的算法则是归源之内,而非归源之外。因与归源,而之前于外,此为归源,当另则之。”此为思想与算法的研究。故而产生“极”这个概念,而之无穷接近∞,而用这个字母表示。”)

而用角度则为360度。(角度制与孤度制推演。圆弧L为2πr。那么角度a,半径R,k为系数。那么L等于kar,而求a角度。则a等于L孤长除以Kr。又因为k为系数。故等于一。a则等于l除以r。又因为l等于2πr,所以2πr除以r。角度a等于2πr。则2π为360度。)

故而微积分的总体思想就是微分无限分割的圆,而再次拼起来的长方形则是积分。而积分接近于圆。

故而“切圆术”与“极限论”和无穷∞表示符号,都是一种微积分的概念与运算规则思想的碰撞与融合而发展运用的高等数学。即微积分的概念。

那么阐述这种思想会存在归源。因为归源释道,而孕子无极生太极。也禅佛,而知儒。

所以归源而之有归源,而归源有神明,而“神”的存在并不是虚无的,而是真实存在的。而意识和认知没有达到那个层次而已!正如科学的探索研究是没有对错的,它只有前进与否,而科学的利弊得失却是有对错的。这是认知使用的方式。而思想上的科学是存在的。

这就是科学的魅力,也是这世间为什么存在“归源”。

归源是这世间一切神明的祖宗,也是一切事物的根源,因其归源而事物存在着一些联系,而事物也存在没有关系的联系,这就是归源。

而之“以直代曲”,或是围点打圆。即之思想之上科技的运算法则之行而向上的突破。而冲破归源,遇见神明。

思想语言是为了表达,交流,而解惑答疑,正如我们所有的运用好的方法就是为了解决问题根本存在。如果时间和空间维度不存在,那么我们自己都不知道自己存在了,为什么存在了!正因为有问题而其才有物质和精神上的价值拷问和判断。就好比人的生活物质精神,以及娱乐!而本无所成就,而过度奢求物质,而不遵从自己内心的精神么,则耗。如斯,物质好不是解决精神障碍,而是解决物质问题,而其精神影响。当没有“精神和物质”这两个词,那么我们怎么谈!谈什么!不过就是生活的生活,而不是状态,而是一切。那么它只被定义为“生活”。而不再有其他意义。人类制造问题,也在解决问题,这根本是人的问题,而不是物体本身存在问题。但是达到这种境界很难!因为人的各种“情绪”会参杂而产生“物”之过也,而“物”何其过也,因人而异。

而科学存在研究的意义,也在于解决人类的新问题,大麻烦!或者是梦想,同样从对于人的好处则是利弊得失权衡轻重缓急。

故而我们的研究,演算,推演,好像也是如同人生的一场旅行,对世界的热爱与追求,询问的情况,感知的微妙变化,世界也在察觉人的情绪感受,心情美好舒畅。然这存在已知条件和未知条件,也就是前提条件。而进行再次求数,这就是数学,而缺少公式计算,则需要推理,进行反向推导过程。那么先觉条件失去,我们的计算量也就会增加,而公式的存在就是为了证明公式的好用和正确性。当你所研究则是推导!因为那是你的研究,计算,而不是超近路,走捷近,因为你也在推导过程!而运算你所谓的结果。微积分兴盛于西方,以简便符号而产生的国度。牛顿和莱布尼茨「茨可为兹,翻译缘故」奠定了微积分符号,和运算规则。他们的运算思想是基于前人的总结智慧和困惑,而形成了突破自我得认知,产生新领域大快车道。