第二百七十四章 从数学界刮到物理界的风(2/2)
天才一秒记住本站地址:[笔趣阁ok]
https://www.bqgok.net最快更新!无广告!
如果有学过现代概率论,那么对这个名字肯定不会陌生。
如果说格罗滕迪克奠定了代数几何,那么柯尔莫果洛夫则奠定了现代概率论。
但他一开始并不是数学系的,据说他17岁左右的时候写了一篇和牛顿力学有关的文章,于是到了科斯莫去读书。
入学的时候,柯老邪和爱德华·威腾一样,一开始对历史颇为倾心。
一次,他写了一篇很出色的历史学的文章,他的老师看罢,告诉他说在历史学里,要想证实自己的观点需要几个甚至几十个正确证明才行。
而柯老邪就问什么地方需要一个证明就行了,他的老师说是数学,于是他就开始了他数学的一生。
而除了奠定现代概率论外,要论柯尔莫果洛夫一生无数中最耀眼的,莫过于湍流三分之?律和sg思想了。
这个成果引领了流体力学近百年来的发展,在流体力学发展的长河中,他以神来之笔在现代湍流发展史上写下了浓墨重彩的一章。
这就是大名鼎鼎的k41理论。
k41理论认为,无论一个湍流系统如何复杂,其涡旋结构都有着相似性,即涡的动能总是由外力作用施加给流场,并注入最大尺度(假设为l)的涡结构。
然后,大尺度涡结构逐次瓦解并产生小型涡旋,同时也将动能由大尺度逐级传向小尺度结构,并依此类推。
但此过程并不会无限进行下去,当涡结构尺度足够小(假设为η)时,流体粘性将占据主导地位,动能转化为内能在该尺度上耗散掉,继而不会继续传向更小尺度的涡结构。
这个过程,被称为能级串过程。
这是当代流体力学最重要也是最基础的知识点。
其他学校徐川不知道,但当初在南大的时候,这一知识点在考试中占据了整整十分的篇幅。
可谓重中之重。
而ns方程的解存在且连续光滑,就有一部分理论建立在k41理论上。
这一次徐川将ns方程推进到一个前所未有的高度,同样利用了这一套理论。
目前来看,k41理论同样适应于湍流,只是不知道,在未来面对最终的ns方程求解时,它是否还能如现在一般大杀四方。
........
收到电话后,谷炳和阿米莉亚风风火火的迅速赶了过来。
“教授,我们到了,麻烦你开下门。”
书房中,徐川接到了谷炳打来的电话,起身出去将两位学生带了进来。
“辛苦你们跑一趟了,这个就是要整理输入电脑中的论文。”